Spatially-Variant Morpho-Hessian Filter: Efficient Implementation and Application
نویسندگان
چکیده
Elongated objects are more difficult to filter than more isotropic ones because they locally comprise fewer pixels. For thin linear objects, this problem is compounded because there is only a restricted set of directions that can be used for filtering, and finding this local direction is not a simple problem. In addition, disconnections can easily appear due to noise. In this paper we tackle both issues by combining a linear filter for direction finding and a morphological one for filtering. More specifically, we use the eigen-analysis of the Hessian for detecting thin, linear objects, and a spatially-variant opening or closing for their enhancement and reconnection. We discuss the theory of spatially-variant morphological filters and present an efficient algorithm. The resulting spatially-variant morphological filter is shown to successfully enhance directions in 2D and 3D examples illustrated with a brain blood vessel segmentation problem.
منابع مشابه
Spatially-varying Iir Filter Banks for Image Coding
This paper reports on the application of spatially variant IIR filter banks to subband image coding. The new filter bank is based on computationally efficient recursive polyphase decompositions that dynamically change in response to the input signal. In the absence of quantization, reconstruction can be made exact. However, by proper choice of an adaptation scheme, we show that subband image co...
متن کاملFixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کاملAn Associative Perception-Action Structure Using a Localized Space Variant Information Representation
Most of the processing in vision today uses spatially invariant operations. This gives efficient and compact computing structures, with the conventional convenient separation between data and operations. This also goes well with conventional Cartesian representation of data. Currently, there is a trend towards context dependent processing in various forms. This implies that operations will no l...
متن کاملTubular Structure Filtering by Ranking Orientation Responses of Path Operators
Thin objects in 3D volumes, for instance vascular networks in medical imaging or various kinds of fibres in materials science, have been of interest for some time to computer vision. Particularly, tubular objects are everywhere elongated in one principal direction – which varies spatially – and are thin in the other two perpendicular directions. Filters for detecting such structures use for ins...
متن کاملThe Hessian of Axially Symmetric Functions on SE(3) and Application in 3D Image Analysis
We propose a method for computation of the Hessian of axially symmetric functions on the roto-translation group SE(3). Eigendecomposition of the resulting Hessian is then used for curvature estimation of tubular structures, similar to how the Hessian matrix of 2D or 3D image data can be used for orientation estimation. This paper focuses on a new implementation of a Gaussian regularized Hessian...
متن کامل